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During the period covered by this grant, January 1,1985 -

December 31, 1987, we have made substantial progress in our
analysis of the development and organization of neural networks
in a number of related areas.

/

I".. Previously, we had proposed a single cell theory for the
development of selectivity and ocular dominance in a neural
network.1 2 During the contract period, this theory has been
generalized to incorporate more realistic neural networks that
approximate the actual anatomy of small regions of cortex. In
particular, we--have analyzed a network consisting of excitatory
and inhibitory cells, both of which may receive information from
LGN. These two cortical cell types then interact through
intracortical connections that are either excitatory or inhibitory.
Our investigation of the evolution of a cell in this mean field
network indicates that many of the results on the existence and
stability of fixed points that have been obtained previously in

_ the single cell theory are successfully generalized here. In
-a-ddition, w*_have- been able to make explicit further statements

concerning the independent effects of excitatory and inhibitory
Jneurons on selectivity and ocular dominance. For example,

shutting off inhibitory cells lessens selectivity and alters ocular
dominance (masked synapses). These inhibitory cells may be
selective, but there is no theoretical necessity that they be so.
Further, the intracortical inhibitory synapses do not have to be
very responsive to visual experience. Most of the learning
process can occur among the excitatory LGN-cortical synapses.
The theoretical results are compared with experiment in
completed and continuing work. -

Another area in which we have made substantial progress is the
analysis of relaxation mechanisms in neural network. We have
investigated the improvement of the storage efficiencey in the
Hopfield model. The original model was capable of accurate
storage and retrieval, with some error correction, for up to 0.1N
stored states, where N is the number of neurons. With
"unlearning", it is possible for the system to recall up to N stored
states with some error correcting ability.7 We have studied a
variation of Hopfield's "unlearning" which is able to achieve
storage and retrieval of well above N patterns but with little
error-correcting capability; this variation bears a resemblance to
the Widrow-Hoff error correcting procedure. 8 Our theoretical
analysis of this scheme showed that the method was equivalent
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to an "effective orthogonalization"; further, the limitations of this
approach were analyzed in terms of an attractor signal and noise
degradation due to such causes as the interaction of the system
state with other stored states. 9

Our analysis of the Hopfield Model led us to examine the general
requirements for storage systems which have high capacity as
well as good error-correcting capability. This has led us to
propose an alternative relaxation procedure for a High Density
Storage Model. The model incorporates an N-dimensional
generalized coulombic potential with essentially inifinte storage;
well-defined domains of attraction can be specified for the
stored states, enabling categorization (generalization) of input
states which have not been stored in the system. 10 11

Like Neural circuits, the immune system network can learn and
remember. The retrovirus HTLVIII/LAV which has been
implicated as the agent responsible for the acquired immune
deficiency syndrome(AIDS) attacks T4(helper) cells of the

4V immune system. We have shown that remarkable interactions
AJ with other infections as well as strong virus concentration

dependence are general properties of ISRV. These theoretical
results have been compared with experimental facts. 12 In
addition, our theoretical model has been expanded to include
some of the latest clinical results. 13

The capacity of model neural networks to generalize from a
partial set of information is an area of much current interest.
The ability to categorize input, to make generalizations based on
a limited set of information, is one of the hallmarks of higher
cognitive processes. In our research in the recent past, we have
undertaken an investigation of the recall and generalization
capabilities of a number of neural models of current interest.

In this context, we have studied the Backward Propagation of
Error Model first proposed by Rummelhart (1986). We have
found that the model is capable of generalizing reasonably well
in continous spaces where the decision boundaries are nonlinear
and decision spaces may not be simply-connected(strong
topology). As a paradigm, we have considered the problem of
learning to distinguish the two regions enclosed by two
concentric circles: the outer annulus, with target ouput of 1, and

4



V

the inner disk, with target output of 0. In simulations of this
problem using the Backward Propagation Network, we have
found that after training with randomly selected patterns in the
two regions, the generalization curve of output versus radius
approaches that of the ideal step-function, provided a sufficient
number of patterns is used and provided that we do not saturate
the network with too many training patterns.

In contrast, for a difficult problem on a lattice such as the parity
problem with highly discontinous decision boundaries, patterns
which are not used for training will generally not be correctly
identified. In fact, the network will identify them as the state of
opposite parity. Our analysis of continous space problems as
described above, suggests in this instance that the system may
be trying to generalize based on the nearest available
information in the continous space sense, which in the case of
the parity problem, where nearest neighbor states have opposite
parity, leads to the misidentification.1'
Currently, we are exploring ways to modify the original
Backward Propagation alogrithm so that it will be useful for
generalization problems like that of parity, where generalization
in the continuous-space sense, that is, assigning an output that
mimics that of the nearest data point, is not an adequate
solution. A number of possibilities are being investigated.
Additional symmetry-sorting terms added to the Backward
Propagation energy functional may prove useful in developing
networks which can handle generalization tasks like parity.
Another possibility is to present the data to the network in such
a way that it is forced to satisfy the constraints of more than one
pattern at the same time; the original Backward Propagation
algorithm examines only one pattern at a time. In this context,
additional symmetry-sorting energy terms may be also quite
useful.1 4

1Theory for the Development of Neuron Selectivity: Orientation
Specificity and Binocular Interaction in Visual Cortex, Bienenstock, E. L.,
Cooper, L. N, and Munro, P., Journal of Neuroscience 2. 32-48 (1982).
2Distributed Memory, Cooper, L. N., in Encyclopedia of Neurosciences, Vol.
11, ed. G. Adelman pp. 633-634, Birkhauser, Boston. 1987; also ARO
Technical Report, March 13, 1985.
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3 Cortical Plasticity: Theoretical Analysis, Experimental Results, in
Imprinting and Conical Plasticity, ed. J. P. Rauschecker and P. Marler,
John Wiley & Sons, N. Y., 1987, also ARO Technical Report, July 10, 1985.
4 Local and Global Factors in Learning, to be published in Brain Structure,
Learning and Memory, ed. J. Davis, R.W. Newburgh, and E. Wegmen, by
AAAS, also ARO Technical Report, November 6, 1985.
5 Mean Field Theory of a Neural Network, Cooper, L. N, Scofield, C. L., to be
published in Proc. Natl. Acad. Sci., also ARO Technical Report, January,
1988.
6 Connectivity in Neural Networks, Cooper, L. N, to be published in the
Proceedings of the Copenhagen Conference on Computer Simulation in

/,. Brain Research.
'I. 7 Storing and Retrieving Data in a Parallel Distributed Memory System,

Potter, T. W., Dissertation and ARO Technical Report, June 9, 1987.
8op. cit.
9 The Hopfield Model and Beyond, Bachmann, C. M., ARO Technical Report,
December 15, 1986.
1 0 A Relaxation Model for Memory with High Storage Density, Bachmann,
C. M., Cooper, L. N, Dembo, A., and Zeitouni, 0., Proc. Natl. Acad. Sci., Vol. 84,
pp. 7529-7531, November, 1987, also ARO Technical Report, June 22, 1987.
-lGeneral Potential Surfaces and Neural Networks, Dembo, A, Zeitouni, 0.,
to be published in Phys. Rev. A, also ARO Technical Report, June 24, 1987.
1 2 Theory of an immune system retrovirus, Cooper, L. N, Proc. Natl. Acad.
Sci., Vol. 83, pp.9159-9163, December 1986.
1 3 Analysis of Immune System Retrovirus Equations, Intrator, N.,
Deocampo, G. P., Cooper, L. N., (to be published in the Conference Record
of The Santa Fe Institute, July 1987).
14 Generalization and the Backward Propagation Neural Network,
Bachmann, C. M., ARO Technical Report, January, 1988.
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Distributed Memory

Abstract

N An account is given of the biological basis for and the elementary

properties of distributed memory. It is shown how a neural network
0

can be constructed to contain such a memory. Also discussed are

problems of address and recall of stored items, as well as the

possible sites of storage of short and long-term memory.
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Cortical Plasticity: Theoretical Analysis. Experimental Results

Abstract

An account is given of a theory of and experimental results on develop-

ment and modification of selectivity and ocular dominance in visual

cortex. The single cell theory is generaiized to be applicable to a

neural network. Also discussed, in the context of the theoretical

ideas, are experiments on the modifiability of inhibitory cells and on

possible candidates for global controllers of learning.
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Local and Global Factors in Learniag

Abstract

Recent progress in the interaction of theoretical ideas and

experimental results that relate to learning and memory is discussed.

Consideration is given, in particular, to the effects of the neuro-

transmitters GABA, Norepinephrine and Acetylcholine on the develop-

ment of circuitry in visual cortex.
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Theory of an Immune System Retrovirus

*i~
Abstract

Like neural circuits, the immune system network can learn and re-

member. The retrovirus HTLVIII/LAV which has been implicated as

the agent responsible for the acquired immune deficiency syn-

drome (AIDS) attacks T4(helper) cells of the immune system. In

this paper, we contrast.the growth of a 'normal' virus with what

we call an Immune System Retrovirus (ISRV): a retrovirus that

attacks T4(helper) cells of the immune system. We show that
0

remarkable interactions with other infections as well as strong

virus concentration dependence are general properties of ISRV.

These ideas are compared with some known experimental facts.
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Connectivity in Neural Networks

ABSTRACT

V A single cell theory for the development of selectivity and ocular

dominance in visual cortex has been generalized to incorporate morea.
SreaListic neural networks that approximate the actual anatomy of small

regions of cortex. In particular we have analyzed a network consisting

V. of excitatory and inhibitory cells, both of which may receive informa-

S-e tion from LUN. These. two cortical cell types then interact through

'intracortical connections that are either excitatory or inhibitory.

Our investigation of the evolution of a cell in this mean field network

"a. indicates that many of the results on existence and stability of fixed

points that have been obtained previously in the single cell theory can

be successfully generalized here. We can, in addition, make explicit

further statements concerning the independent effects of excitatory and

0" inhibitory neurons on selectivity and ocular dominance. For example,

shutting off inhibitory cells lessens selectivity and alters ocular

*dominance (masked synapses). These inhibitory cells may be selective

but there is no theoretical necessity that they be so. Further the

intracortical inhibitory synapses do not have to be very responsive to

visual experience. Most of the learning process can occur among the

excitatory LGN-cortical synapses. Some of these theoretical ideas are

w,,~compared with experimental results.



Mean Field Theory of a Neural Network

4." (Visual Cortex/Synaptic Modification)

Leon N Cooper and Christopher L. Scofield*

Center for Neural Science

and Physics Department

'. Brown University

Providence, Rhode Island 02912

ABSTRACT

A single cell theory for the development of selectivity and ocular dominance in visual cortex

has been generalized to incorporate more realistic neural networks that approximate the

actual anatomy of small regions of cortex. In particular we have analyzed a network

consisting of excitatory and inhibitory cells, both of which may receive information from

LGN and then interact through cortico-cortical synapses in a mean field approximation. Our

investigation of the evolution of a cell in this mean field network indicates that many of the

results on existence and stability of fixed points that have been obtained previously in the

single cell theory can be successfully generalized here. We can, in addition, make explicit

further statements concerning the independent effects of excitatory and inhibitory neurons

on selectivity and ocular dominance. For example, shutting off inhibitory cells lessens

selectivity and alters ocular dominance, (masked synapses). These inhibitory cells may be

selective but there is no theoretical necessity that they be so. Further the intracortical

inhibitory synapses do not have to be very responsive to visual experience. Most of the

learning process can occur among the excitatory LGN-cortical synapses. Some of these

ideas are compared with experimental results.

*Present address: Nestor, Inc., 1 Richmond Square, Providence, Rhode Island, 02906.



STORING & RETRIEVING DATA IN A PARALLEL DISTRIBUTED

MEMORY SYSTEM

ABSTRACT

TERRY WAYNE POTTER

B.S., Math, Kent State University, 1970
M.S., Computer Science, Rutgers University, 1972

The storage and retrieval of patterns in a Hopfield-like Parallel Distributed Mem-

ory is investigated experimentally with a view toward increasing its storage capacity.

The first two Chapters give an overview of distributed memories and in particular

the Hopfield distributed memory. This is followed by a Chapter which experimen-

tally identifies the basic storage capacity of the original Hopfield memory when

S"-using text patterns.

-This dissertation then experimentally investigates new and untested methods to

increase the storage capabilities of a Hopfield-like neural net. Increasing the storage

capacity by using the continuous-valued Hopfield memory is explored in Chapter 3

and the impact on capacity of data representation is experimentally investigated in

Chapter 4. We then focus on new ways of storing data (changing the interconnect

strengths) including in Chapter 7 developing a new method called Modifying the

Energy Contour or AMEC. In addition, this Chapter also outlines how to increase

error-tolerance through the use of noisy patterns.

The Hopfield distributed memory is then contrasted to another intelligent mem-

ory subsystem based on more of a traditional computer technology. In Chapter 8

we see that traditional computer technology using data-parallel techniques has a

greater storage efficiency than possible with current Hopfield-like distributed mem-

ories. The design of this data-parallel memory is based in part on what is learned
experimentally from the preceding Chapters on the Hopfeld-like distributed mem-
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ory. This fast data-parallel approach also supports retrieval of data patterns with

noisy inputs although it does not have. all the functionality of the Hopfield-like

distributed memory.
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The Hopfield Model and Beyond

Abstract

The standard Hopfield model (both digital and analog)

and algorithms to improve its performance are reviewed.

An analysis of the model and the modification algorithms

is given. Future directions for continuous models which

*have both large capacity and good error-correcting capa-

.. bilities are examined.
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A Relaxation Model for Memory with High Storage Density

Charles M. Bachmann*t, Leon N. Cooper*t, Amir Dembot,
and Ofer Zeitounit

*Department of Physics and of t Applied Mathematics

and t Center for Neural Science
Brown University

Providence, Rhode Island 02912

a

Abstract

'I.

We present a relaxation model based on an N-dimensional Coulomb poten-
tial. The model has essentially infinite storage capacity and, in addition,
well-defined basins of attraction about stored memory states. The model
is compared with the Hopfield relaxation model.

9
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GENERAL POTENTIAL SURFACES AN4D NEURAL NETWORKS

Amir Dembo and Ofer Zeitouni

Division of Applied Mathematics
Brown University

Providence, Rhode Island 02912

ABSTRACT

Investigating Hopfield's model of associative memory implementation by a

neural network, led to a generalized potential system with a much superior per-

formance as an associative memory. In particular, there are no spourious memories,

4 and any set of desired points can be stored, with unlimited capacity Cin the con-

tinuous time and real space version of the model). There are no limit cycles

in this system, and the size of all basins of attraction can reach up to half

the distance between the stored points, by proper choice of the design parameters.

A discrete time version with its state space being the unit hypercube

is also derived, and admits superior properties compared to the corresponding

Hopfield network. In particular the capacity of any system of N neurons, with a

fixed desired size of basins of attractions, is exponentially growing with N and

is asymptotically optimal in the information theory sense. The computational

complexity of this model is slightly larger than that of the Hopfield memory,

but of the same order.

The results are derived under an axiomatic approach which determines the

desired properties and shows that the above mentioned model is the only one

to achieve them.
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Analysis of Immune System Retrovirus Equations

(human imnunodeficiency virus / acquired immunodeficiency syndrome)

Nathan Intrator
* Gregory P Deocampo

Leon N Cooper

Center for Neural Science, Department of Physics,
and Division of Applied Mathematics

Brown University,

Providence, RI 02912

,'-/ Abstract

An attempt has been made to mathematically model the patterns of viral growth

and the associated immune system response characteristically associated with

infection by the human immunodeficiency virus (HIV). By employing a very

simple model of viral growth and the humoral immune system response, the

interaction between a 'normal' virus and the immune system response is compared
with that of a viral entity called an immune system retrovirus (ISRV) (Cooper,

1986). Some of the consequences of the model are presented in numerical

simulations and compared to other models treating the cellular response of the

immune system.
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Generalization and the Backward Propagation Neural Network

by Charles M. Bachmann
Department of Physics and
Center for Neural Science,

Brown University,
Providence, R. I. 02912

ABSTRACT

Results of simulations in discrete and continuous input
". simulations are discussed for the Rumelhart's Backward

Propagation of Error Neural Network. Comparison of. the
results offers a way to understand the problem of generalization
from a partial set of data in the Backward Propagation Network
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